
International Journal of Theoretical Physics, VoL 30, No. 7, 1991 

Periodic Inverse Problem for a New Hierarchy of 
Coupled Evolution Equations 

Chandana Ghose I and A. Roy Chowdhury t 

Received August 10, 1990 

We study the inverse problem with periodic boundary condition for a new class 
of integrable nonlinear evolution equations. The multiphase periodic solutions 
for the nonlinear fields (p, q, r) are expressed in terms of the Riemann theta 
function, which is obtained via the linearization of the flows of the set of auxiliary 
variables "~/" on a Riemann surface. An explicit case is evaluated to obtain the 
form of the algebraic curve on which the variables "p./" move. 

1. I N T R O D U C T I O N  

The inverse problem of  nonl inear  equat ions falls into two ca tegor ies - -  
per iodic  and asymptot ic  (Bullough and Caudrey,  1980). While the latter 
class o f  problems has been studied in various situations, the former  one 
has not been so widely investigated. The most  exhaustively analyzed problem 
belonging to the per iodic  class is that o f  the Schr/Adinger opera tor  or 
Sturm-Liouvi l le  type (Marchenko ,  1974). The case o f  the s ine-Gordon  type 
equat ion was studied by Forest and McLaughl in  (1982), and that o f  the 
Thirring model  was analyzed by Date and Tanaka  (1976). The corresponding  
situations in the case o f  derivative and mixed nonl inear  Schr rd inger  
equat ions were dealt with by Roy C h o w d h u r y  et al. (1985). Here we show 
that the same me thodo logy  with some modificat ion can be used to study 
the periodic inverse problem for an extended class o f  coupled nonl inear  
equations,  which contain  the A K N S  class as a special case. 

2. F O R M U L A T I O N  

Since we intend to discuss a whole hierarchy o f  equat ions rather than 
a part icular  single equat ion,  we start with the space part  o f  the Lax equation,  
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which reads (Roy Chowdhury and Roy, 1986) 

0x:0;  r . ,  

When r becomes zero, (1) reduces to the AKNS problem. As in Forest and 
McLaughlin (1982), we construct the equations for the square eigen- 
functions; f =  0~, g = 02,, h = 01~2: 

f x =  2 ( - i~  + r ) f  + 2ph 

gx = 2(iA- r )g+2qh  (2) 

h x = q f + p g  

It is now easy to ascertain that (h 2 - f g ) x  = 0. On the other hand, we write 
the time evolution of ~b as 

~, = ~ B.x "-j (3) 
j~0  

when B. are 2 • 2 matrices of the form 

and the consistency of (1) and (3) yields the integrable hierarchy, whence 
we can obtain 

f ,  = 2y~ ( a j f  + bjh)~ "-j  

g, = 2 ~ ( cjh - ajg)A "-j (4) 

h, = X (bjg + cjf)A ~-j 

It is now assuring to note that without using any specific values of the 
coefficients aj, bj, and cj we have 

(h2-fg) ,  =0  

Also, for completeness we quote from Roy Chowdhury and Roy (1986) the 
set of nonlinear equations generated'. 

q, = [ -2ic~+l (5) 

rt \ a,x + pc, - qbn 

along with the recursion for the coefficients aj, bj, and cj : 

b. ip r-�89 0 / lb._, /  (6) 
<. ,q o r+'o 
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We now make the following ansatz for the solution of  equations (2); 
we set 

N 
h = ~, hnA n+2 

n=O 

N 

g =  ~, g.A "+~ (7) 
rl=0 

N 

f =  E f n  A n + l  
rl=O 

along with 

2 N + 2  
h 2 - g f = P ( A )  = ~, PkA k+2 

k = 0  

so that the Pk are constants, with respect to both space and time variation. 
On the other hand, since g and f are polynomial of degree N + 1, it is quite 
plausible to assume that they can be written in the form 

N+1 

g = g N  ~ [A-/xj(x, t ) ]  
j=l 

N§ (8) 

f=f,,, II [X-~;(x, t)] 
j=l 

SO that/.~j and/xj are the zeros of the analytic functions g and f. Substituting 
(8) in (2) and evaluating the resulting equation at A =/z~, we get (for f )  

Op,'k = _ 2i[ P(IX'k) ] '/2 
(9) 

hN 

Similarly, for g we obtain 

01~., k = 2i[P(tXk)]  1/2 
(10) l-[N+1 

OX hN llj=l;j~k (['s163 

In the derivation of (9) and (10) we have used the condition that h21a=xk = 
P(IXk). On the other hand, using the series expansions (7) in equation (2), 
we obtain, by equating different powers of A, 

ig~. 
q = -  hN ' P = + (11) 

and 

iP21~+1 1 a 
r = - i ~ j  2P2N+2 2 a x ( l ~  
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along with some useful identities: 

hN-1 P:N+I 
hN - 2P2N+2' 

gN-.~ = _ E ~ j  gN 

fN-1 - - y . ~  
f~ 

(12) 

Also, an expression for r can be written as 

r = - i  Y, I*' iP2N+I ~_1 O_q_ (10gfN) (13) 
J 2P2N+2 20X 

Equations (11) and (13) are the basic equations for the inverse problem, 
so if we can ascertain the behaviors of  (gN, hN, fN, I-% tz~, s), then the 
nonlinear fields (p, q, r) are known. In the following we proceed to develop 
the evolution equations for these variables and show how they can be 
linearized on a Riemann surface. In the sequel we will refer to the set 
(gN, hN,fN, Ixj, tzj) as auxiliary variables. 

3. E V O L U T I O N  OF T H E  AUXILIARY VARIABLES 

The space and time evolution of the variables "/zs" are now determined, 
from which the inverse periodic problem is solved via Abel's mapping. The 
space variation is already given in (9) and (10). For the required time 
evolution we consider a second-order flow in equation (3) instead of the 
general one. That is, we set n = 2 in (3) and the coupled evolution equations 
that are generated are as follows: 

I q' 2 (qrx)+iqx+2rqx-2q r, dx+(+qr2+2iqr-pq  2) 

= _P-P-~+ f P' 2 (prx)+ipx+2rpx+2p r tdx+(-2prE-2ipr+p2q)  

(14) 

These equations reduce to the usual nonlinear Schrrdinger set if r = 0. At 
this point we may note that even this new hierarchy of equations is 
Hamil tonian and can be written as 

(P//i 10 / HJ p  
q, = - o o I I ~ H / ~ q |  

r, o a/ox/\~H/~r/ 
(15) 
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where H stands for a Hamiltonian. We now substitute the forms (7) and 
(8) in equation (4) corresponding to the case n = 3, and after some simple 
algebraic manipulation deduce the following equations for/zj,/ .~ : 

N+, , P2N+11 
0]'6k'= r--rN+12[P(/'*~)], , ,, - 1 - / , ~ +  E l~Jq-2P2N+2 j (16) 
Ot hN llj=l;j~g ~].s j= l  

O].~k= 2[P(tZk)]l/2 ( N+l PEN+I ~ (17) I-[N+I l+p.k--  F, /~j 2P2N+2] Ot hN j~k;j=l (] "l'k --].6j) j= l  

and finally the equations for fN and gN. 

4. EXPLICIT LINEARIZATION OF THE /zj 
F L O W  A N D  A B E L  M A P  

Due to the presence of the quantity [P(/~k)] 1/2 in equations (9), (10), 
and (16), each of these equations is to be defined properly on an n-sheeted 
Riemann surface, constructed by gluing such single sheets through the gap 
[/*j,/*j+l]. So these describe the motion of the auxiliary variables on a 
l~emann surface. Let us now construct the quantity 

. ~ ,~N-1 
.8)  

where R2(A) = zr(A - Aj). 
It is then easy to show that due to (9), (16), and (10), l(x, t) evolves 

both with respect to space and time linearly, that is, 

01, 
=cons t=  c~i (say) 

Ox 
(19) 

01, 
- -  = const =/3i (say) 
Ot 

whence we at once infer that 

li(x, t) = aix + flJ + Ti 

So the motion is linearized via the change of variable (l~). Now the whole 
problem is, given the l;, how can one retrieve the old variables /zj ? It is 
actually the old Abel mapping and it is now convincingly proved that they 
are determined by multiphase Riemann 19 functions, with phases given by 
(l~). The Riemann 19 function is defined as 

19(P, B)=Y~ exp[ icr( BK, K ) + 2 cri( P, k)] 
k 
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and 

O ( Z )  = O ( e -  l(x,  t ))  

li = a i x  + flit + Yi 

N 

I o= Y~ wi(~j(v, 0))+�89 
j=l 

whence B~ denotes the periodic matrix given by B,~ =~b~ dr and dcov are 
the differentials normalized according to 

a~ do~ = (20) 

a and b, respectively, denote the a cycles and b cycles defined on the 
Riemann surface. The differentials dcov are constructed according to 

C i , 1  A N - 1  ..~ . . . d I- C i ,  N 
& o ~ -  , v =  1 , 2 , . . . ,  N (21) 

r ( x )  

5. DISCUSSION 

Since it is known that the Riemann theta function is nothing but a 
generalization of the elliptic and hyperelliptic functions, they are also doubly 
periodic. Hence, once the/zj are determined by them, the nonlinear variables 
(p, q, r) are bound to be periodic through equations (11). Lastly, since the 
application of the Riemann theta function is too abstract, one may have 
some idea about the/zj  variables through the following approach. Let us 
consider n = 1 in equations (9) and (10), which then read 

Op., 2 i [ P ( ~ , ) ]  '/2 

ax - #*lh:(#*l - 1~2) 
(22) 

01~= - 2 i [  P(tz2) ] '/2 

Ox - #z2h=(lzl - 1*2) 

So we get 

o r  

O#.tl #zl Op,2 P.2 
ax [P(#*,)]'/ '  ~ - -  Ox [P0 , , ) ]  ' / 2 = ~  

o-7 (~')  i: P(,U,)I ' / '  +o~ rp(~ , ) ] , / ,  - o (23) 
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The  in tegra t ion can now be faci l i tated if  the odd  P~ (which are all absolu te  
constants)  are zero; then  we represent  (Springer,  1960) 

P (  x ) = ( x 2 -  a 2 ) (  x ~ - b 2 ) (  x ~ - c ~) 

and for  + 0 0 >  ~ >  a 2, ~ >  ~ >  a 2, we get 

i - b Z /  ,:, a2X-i 1/2 
- - 1 /  t ] / "  1 i ) l  ..~ ~--1 
~ .  La2(/z i _  b2) j  ,.,,, LaZ(l~ 2 _  b2) j  = 0 

We now utilize the fol lowing addi t ion  fo rmulas  for  Sn funct ions  

Sn u Cn v d n  v + C n  u d n  u Sn v 
S n ( u  + v )  - 

1 - K 2 Sn 2 u Sn 2 v 

to deduce  the equa t ion  o f  the a lgebraic  curve on which  (/Zl,/z2) are con- 
s trained to move ;  we have  

~b(x,y) = 0  

where  

fb(x,  y )  = y ( x  2 -  a2)l12(x2 - b2)l12[a2(y 2 - b 2) - K 2 b Z ( y  2 -  a2)] 1/2 

+ x ( y  2 -  a2) l /2 (y  2 _  b2)1/2 

X [a2(x  2 -- b 2) - K2 b 2 (x2  - a2)] 1/2 (24) 

Equa t ion  (24), u p o n  ra t ional izat ion,  gives the equa t ion  o f  an elliptic curve,  
the coord ina tes  o f  which  are usual ly  pa rame t r i zed  in te rms o f  elliptic 
functions.  A similar  analysis  can also be  done  for  the t ime var ia t ion o f  the 
auxi l iary variables.  

Lastly,  it can be men t ioned  that  our  a p p r o a c h  can yield the per iod ic  
solut ions not  only for  a single equat ion,  but  for  a whole  h ierarchy o f  
equat ions ,  a poin t  which  was over looked  in previous  publ icat ions.  
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