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Periodic Inverse Problem for a New Hierarchy of
Coupled Evolution Equations
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We study the inverse problem with periodic boundary condition for a new class
of integrable nonlinear evolution equations. The multiphase periodic solutions
for the nonlinear fields (p, g, r) are expressed in terms of the Riemann theta
function, which is obtained via the linearization of the flows of the set of auxiliary
variables “'x.”" on a Riemann surface. An explicit case is evaluated to obtain the
form of the algebraic curve on which the variables ““u,” move.

1. INTRODUCTION

The inverse problem of nonlinear equations falls into two categories—
periodic and asymptotic (Bullough and Caudrey, 1980). While the latter
class of problems has been studied in various situations, the former one
has not been so widely investigated. The most exhaustively analyzed problem
belonging to the periodic class is that of the Schrodinger operator or
Sturm-Liouville type (Marchenko, 1974). The case of the sine-Gordon type
equation was studied by Forest and McLaughlin (1982), and that of the
Thirring model was analyzed by Date and Tanaka (1976). The corresponding
situations in the case of derivative and mixed nonlinear Schrodinger
equations were dealt with by Roy Chowdhury et al. (1985). Here we show
that the same methodology with some modification can be used to study
the periodic inverse problem for an extended class of coupled nonlinear
equations, which contain the AKNS class as a special case.

2. FORMULATION

Since we intend to discuss a whole hierarchy of equations rather than
a particular single equation, we start with the space part of the Lax equation,
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which reads (Roy Chowdhury and Roy, 1986)
_ A=—r r
lllx - ( q r— A) "l’ (1)

When r becomes zero, (1) reduces to the AKNS problem. As in Forest and
McLaughlin (1982), we construct the equations for the square eigen-

functions; f=y3, g=y3, h=y¥,:
fe=2(—iA+r)f+2ph
g =2(iA~r)g+2qh 2)
h.=qf+pg

It is now easy to ascertain that (h*~fg),. =0. On the other hand, we write
the time evolution of ¢ as

= ﬁo Ba"™ 3)
2

when B, are 2x2 matrices of the form

(5 %)
G —4

and the consistency of (1) and (3) yields the integrable hierarchy, whence
we can obtain

£i=2Y (af +bh)A"
g =23 (ch—ag)A"™” (4)
h.=Y. (bg+gfHr"~

It is now assuring to note that without using any specific values of the
coefficients a;, b;, and ¢; we have

(h*-fg).=0
Also, for completeness we quote from Roy Chowdhury and Roy (1986) the
set of nonlinear equations generated:
P 2ib,+
q. )= =2iCy4y (5)
e @+ pc, — gb,
-along with the recursion for the coefficients a;, b;, and ¢;:
a, ilrofax if2Iqa/ax i/2Ipdfax\[a,.,
b, |= ip r—3o 0 b,y (6)
C, iq 0 r+is Cry
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We now make the following ansatz for the solution of equations (2);
we set

N
h= Z hn/\n+2
n=0
- +
g= gogn’\n ! (7

f= gof;l/\n+1

along with

2N+2

-gf=P\)= z PR

so that the P, are constants, with respect to both space and time variation.
On the other hand, since g and f are polynomial of degree N +1, it is quite
plausible to assume that they can be written in the form

N+1

g£=8nN _1;[1 [A—p(x, 1)]
' (8)

N+1
f=fv T A= pi 0]
=
so that u; and u; are the zeros of the analytic functions g and f. Substituting
(8) in (2) and evaluating the resulting equation at A = u}, we get (for f)
i __ 2i[P(pi)]"?

= (9)
ax hN H,Ntlj;ék (s — u5)

Similarly, for g we obtain

dpki 2i[P(pi)]"?

—= (10)

ox  hn vatlﬁek (e — 17)
In the derivation of (9) and (10) we have used the condition that h’|,_,, =
P{u). On the other hand, using the series expansions (7) in equation (2),
we obtain, by equating different powers of A,

g=—"%  p=+" ()

and
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along with some useful identities:

hn-y  Poner En-1
= ’ - ~E :u‘j

hny  2Pynas gn

(12)
Sn-i

—— —Z !

In H

Also, an expression for r can be written as

P, 19

r=—iY =5 24 = (log fi) (13)

2P2N+2 2 0x

Equations (11) and (13) are the basic equations for the inverse problem,
so if we can ascertain the behaviors of (gn, hn, fn, 4, 1}, 5), then the
nonlinear fields (p, g, r) are known. In the following we proceed to develop
the evolution equations for these variables and show how they can be
linearized on a Riemann surface. In the sequel we will refer to the set
(gn~, hn, [, 1y, 17) as auxiliary variables.

3. EVOLUTION OF THE AUXILIARY VARIABLES

The space and time evolution of the variables ““u;” are now determined,
from which the inverse periodic problem is solved via Abel’s mapping. The
space variation is already given in (9) and (10). For the required time
evolution we consider a second-order flow in equation (3) instead of the
general one. That is, we set n =2 in (3) and the coupled evolution equations
that are generated are as follows:

==

=" +(gqry) +ig. +2rg. ~2q J r, dx+ (+qr’+2igr — pq*)

(14)

= —%‘3+ (pr:) tip,+2rp.+2p J r,dx+ (—2pr2—2ipr+p2q)

These equations reduce to the usual nonlinear Schrodinger set if r=0. At
this point we may note that even this new hierarchy of equations is
Hamiltonian and can be written as

y 0 1 0 8H/ép
g |=t—-1 0 0 8H /8q (15)
r, 0 0 3/ax/\S6H/ér
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where H stands for a Hamiltonian. We now substitute the forms (7) and
(8) in equation (4) corresponding to the case n =3, and after some simple
algebraic manipulation deduce the following equations for u;, u;:

O 2[P(ui)] [ A Pyn+y ]

b _ Sl ¥ w2 (g6)
at hn H}N—'l-lj#k (k= p)) - j; K 2PN

Ok 2[P(ui)]? ( AL Pyn+y )

_—= 1+ 17)
gt hn H_::I:j=1 (e — p5) a g s 2PN+

and finally the equations for fy and gy.

4. EXPLICIT LINEARIZATION OF THE g;
FLOW AND ABEL MAP

Due to the presence of the quantity [ P(u,)]"/? in equations (9), (10),
and (16), each of these equations is to be defined properly on an n-sheeted
Riemann surface, constructed by gluing such single sheets through the gap
[, ui+1]. So these describe the motion of the auxiliary variables on a
Riemann surface. Let us now construct the quantity

me AN-1
L(x, t)=— z C; El L Tk (18)

where R*(A)=m(A—A)).
It is then easy to show that due to (9), (16), and (10) I(x, t) evolves
both with respect to space and time linearly, that is,

al; const (say)
—=const=a; (sa
ax say
(19)
=const=f; (say)

whence we at once infer that
L(x, t)= a;x+ Bit+y;

So the motion is linearized via the change of variable (/). Now the whole
problem is, given the /, how can one retrieve the old variables p; ? It is
actually the old Abel mapping and it is now convincingly proved that they
are determined by multiphase Riemann O functions, with phases given by
(). The Riemann O function is defined as

O(P, B)=} explinm(BK, K)+2mi(P, k)]
k
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and
8(2Z)=0(e—1I(x, 1))
L=a;x+Bit+y,

N
l(i) = '21 Wi(,U«j(U, 0)) +%Bij -j/2
=
whence B; denotes the periodic matrix given by B, =$ b dw, and dow, are
the differentials normalized according to

§ dw, =8, (20)

a and b, respectively, denote the a cycles and b cycles defined on the

Riemann surface. The differentials dw, are constructed according to

CoAVN '+ -+ Cn
R(A)

dw, = s v=12,...,N n

5. DISCUSSION

Since it is known that the Riemann theta function is nothing but a
generalization of the elliptic and hyperelliptic functions, they are also doubly
periodic. Hence, once the u; are determined by them, the nonlinear variables
(p, g, r) are bound to be periodic through equations (11). Lastly, since the
application of the Riemann theta function is too abstract, one may have
some idea about the u; variables through the following approach. Let us
consider n =1 in equations (9) and (10), which then read

apy _ 2i[P(ui)]?
0x  pahy(pq—p2)
oz _ —2i[P()]"”
0x  pohy(p— )

(22)

So we get

Bt Y g o
ax [P(Ml)]l/2 9x [P(Mx)]l/z

or

9 oy 1 8.5 1
ox UV TBGaoT” Tox ) [P @
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The integration can now be facilitated if the odd P; (which are all absolute
constants) are zero; then we represent (Springer, 1960)

P(x)=(x*=a®)(x*-b*)(x*~c?)
and for +00> u?> a? ©> ui>a?, we get
61 [bz(uf— az)]l/z+ 5! [bz(ui— az)]“2 o

" La*(ui-b%) " La¥(u3-b%)
We now utilize the following addition formulas for Sn functions
SnuCnvdnov+CnudnuSnv

1-K?Sn*u Sn’v

to deduce the equation of the algebraic curve on which (u,, u,) are con-
strained to move; we have

Sn(u+v)=

#(x,y)=0
where
é(x, y) = y(x* = a®)*(x* - b*) [ a*(y* - b*) - K*b*(y* — a”)]"*

+x(y2 _ a2)l/2(y2 _ b2)1/2

x[a*(x* = b%) - K?b*(x*~a)]"/? (24)
Equation (24), upon rationalization, gives the equation of an elliptic curve,
the coordinates of which are usually parametrized in terms of elliptic
functions. A similar analysis can also be done for the time variation of the
auxiliary variables.

Lastly, it can be mentioned that our approach can yield the periodic

solutions not only for a single equation, but for a whole hierarchy of
equations, a point which was overlooked in previous publications.
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